
February 10, 2007 / Vol. 5, No. 2 / CHINESE OPTICS LETTERS 79

An improved computing method for
the image edge detection
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The framework of detecting the image edge based on the sub-pixel multi-fractal measure (SPMM) is
presented. The measure is defined, which gives the sub-pixel local distribution of the image gradient. The
more precise singularity exponent of every pixel can be obtained by performing the SPMM analysis on
the image. Using the singularity exponents and the multi-fractal spectrum of the image, the image can be
segmented into a series of sets with different singularity exponents, thus the image edge can be detected
automatically and easily. The simulation results show that the SPMM has higher quality factor in the
image edge detection.

OCIS codes: 100.2650, 100.5010, 100.2000, 120.2650.

The aim of image edge detection is the procedure of di-
viding the image into some regions with the particular
attribute and extracting the interesting object. The tra-
ditional edge extraction operators are mainly based on
the first and second derivative of the image gray level
value[1]. However, the derivative of the gray level value
is sensitive to the background noise. Moreover, when the
images have lots of texture parts, they will be difficult to
segment and to analyze with the traditional tools. In this
paper, we adopt a multi-fractal approach, derived from
thermodynamical concepts, which combines aspects from
the physical and statistic attributes of the images to deal
with the edge detection problem. Namely, due to the fact
that a great variety of real world scenes are a flow in fully
developed turbulence or chaotic nature images, we expect
any intensive physical quantity to define a multi-fractal
structure[2]. Then the images can be hierarchically de-
composed into different parts from sharp edges to softer
textures. From 90’s up to the present, many researches
on the multi-fractal methodology have been reported[3,4].
Through defining the measure μ as the gray level gradi-
ent integrating within every pixel neighborhood, Turiel
et al. proposed the image multi-fractal decomposition
method based on wavelet projection and the image re-
construction algorithm from the most singular manifold
(MSM)[5,6]. In this paper, the new method is presented
to extract the image edge by sub-pixel multi-fractal mea-
sure (SPMM). Compared with the traditional image de-
tection algorithms, the proposed algorithm can obtain
more precise results.

According to Ref. [7], any image is denoted as I(x),
where x is the vector coordinates of the referred pixel.
For any subset Ω of the image, a positive measure μ(Ω)
is defined by

μ(Ω) =
∫

Ω

dy |∇I |(y), (1)

where |∇I(x)| denotes the modulus of the gray-level gra-
dient ∇I(x). This measure gives an idea of the local vari-

ability of the gray level values around the point x. Ac-
cording to the multi-fractal theory, we will be interested
in the relationship between the measure and different
scales. Given a collection of balls Br(x) of radii r cen-
tered at point x, for r is small enough, if[5]

μ(Br(x)) ∼ α(x)rd+h(x), (2)

the measure is multi-fractal. Here the coefficient α(x)
is scale independent and d is space dimension (the im-
age dimension is 2). The local singularity exponent h(x)
characterizes the texture activity of the particular point
x. The exponents can be obtained by means of a log-log
regression applied to Eq. (2) at every point. However,
direct logarithmic regression performed on Eq. (2) yields
rather coarse results when it is applied on discrete images,
mainly due to the difficulties of interpolating the formula
for scale r representing non-integer amounts of pixels. In
such cases, it is convenient to study the projections of
the measure μ(Br(x)) over an appropriate wavelet ψ(x

r )
around the point x[7]. If μ(Br(x)) verifies Eq. (2) and
the wavelets are the characteristic functions, tight sup-
port functions and prompt dropping functions[3], then
the projection value has the exponential law with the
scale r

Tψμ(x1, r) ∼ β(x1)rh(x1), (3)

where β(x1) is scale independent. Logarithmic regres-
sion performed on Eq. (3) yields the singularity exponent
(h(x1)) of the particular point x1 representing from the
most to the less informative structures of the image.

In order to acquire the precise value of the h(x) of every
point x, a new algorithm is proposed to acquire the mea-
sure μ(Br(x)) based on the gray level gradient ∇I(x)
on the position of sub-pixel. First we apply the gradi-
ent operator on the contrast image: ∇I = [Gx Gy ]T =[
∂I
∂x

∂I
∂y

]T

. Figure 1 shows the Br(x) with radii r circular
neighborhood (gray region) and the pixels with rectan-
gular domain. In general, the circular area does not only
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Fig. 1. Schematic plan of the radii r circular neighborhood.

contain integer-number pixels. As Fig. 1 shows that the
circular area contains the other eight pixels besides pixel
(No. 0). If we consider the gradient value of one pixel
defined on the whole rectangular domain, the pixels on
radii r circular neighborhood have different contributes
for the measure μ(Br(x)). So we need to divide the orig-
inal pixel into the sub-pixels and calculate the gradient
value at the position of the sub-pixels. For example, the
pixel (No. 0) is divided into 9 sub-pixels by 3 × 3 lat-
tice (see the dotted line in Fig. 1). In this way we can
integrate the gradient value of every fraction contained
in the Br(x). Owing to the convolution effect of charge
coupled device (CCD) and optics diffraction processing,
the sharp change in gray level value in object space will
be transformed to gradual change in image space, i.e.

I(i, j) =

j+0.5∫

j−0.5

i+0.5∫

i−0.5

g(x, y)dxdy, (4)

where I(i, j) denotes the gray value of the size of 1 × 1
unit pixel, g(x, y) denotes the light distribution function.
According to central-limit theorem, the gray level distri-
bution law in the image can be assumed to be Gaussian
distribution. So the wavelet projections Tψμ(x1, r) can
be calculated by

Tψμ(x1, r) =
∫
Br(x)

[g′(y)dμ(y)]
1
rd
ψ(

x1 − y
r

), (5)

where g′(y) denotes the gradient distribution coefficient
at the point y, and

∫ 1

0
g′(r)dr = 1. The distribution

coefficient g′(y) at the position of the sub-pixels can be
obtained by least square procedure applied on the known
gradient value at integer position. Substituting Eq. (5)
into Eq. (3), we can acquire the more precise Tψμ(x1, r)
at the point x1. Given a wavelet, we compute for each
image five wavelet projections at each point x1 for cir-
cular neighborhoods Bri(x) |ri = r1, · · · , r5 . Then we
perform a log-log linear regression according to Eq. (3).
The slope equals the singularity exponent h(x1). Fur-
thermore, the most singular exponent h∞ is calculated
as the average of the 1% and 5% quantile of the distri-
bution of singular exponent. And the pixels belonging
to Fh∞ = FMSM = {x |h∞ − Δh ≤ h( x) ≤ h∞ + Δh}
are collected into a set named by most singular manifold

(MSM or 1th MSM). The choice dispersion value Δh is
conventionally ±0.15. Finally the MSM can be regarded
as the contour of the image.

We apply the methodology above to decompose the im-
age of Boston city (see Fig. 2, 256×256 pixels) into muti-
fractal components. Here the selected wavelet is the first
radial derivative of Lorentzian wavelet ψ(r) = −2r

(1+r2)2

and the radii of the circular neighborhood take 1,
√

2, 2,
2
√

2, 3 pixel size respectively. The original unit pixel is
divided by 1×1, 3×3 lattice and the gradient distribution
parameter is acquired by least square approximation. In
order to compare the performance of SPMM (sub-pixel
size of 1/(1 × 1) and size of 1/(3 × 3)) with other clas-
sical edge detectors such as Prewitt operator and LoG
(Laplacian-Gauss) operator, we make the results visible
distinctly by transforming the processing results into bi-
nary images. The results are shown in Fig. 3. Figure
3(a) shows the result by utilizing the Prewitt operator
(the default gray level gradient threshold is 0.04). Figure
3(b) shows the result of the LoG operator (the default
gray level threshold is 0.0069, σ = 2). Figures 3(c) and
(d) show the results of our SPMM method with sub-pixel
size of 1/(1 × 1) and 1/(3 × 3), respectively. The singu-
larity exponents are −0.53 and −0.445. From the above

Fig. 2. Image of Boston city (256 × 256 pixels).

Fig. 3. Processing results of the image of Boston city using
(a) sobel oprator, (b) LoG oprator, (c) SPMM method with
sub-pixel size of 1/(1 × 1), and (d) 1/(3 × 3).
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results, we can make conclusion that the edge extraction
results based on multi-fractal measure are better than
the classical edge detector. Moreover, owing to applying
the SPMM method, the extracted edges preserve the de-
tails of the original image and the result agrees more with
human visual observation. At the same time, the quality
factors (Q factor) of the edge detectors mentioned above
have been evaluated. According to the three error oc-
currence numbers (the edge pixels drop-out, locating the
edge pixels failure, mistaking the noise pixels for the edge
pixels) generated from the edge detection procedure, we
define the Q factor as

Q =
1
Ne

Np∑
i=1

1
1 + kd2

i

, (6)

where Ne = max{NI, Np}, NI, Np represent the pixel
number of the ideal edge and the practical edge respec-
tively, k is the proportional constant and di is the vertical
distance between the practical edge point and the ideal
edge point. The Gaussian noise (mean value = 0) is
added into the test image (64× 64 pixels, containing the
vertical mark located in the middle of the image). The

Fig. 4. Quality factor of the edge detectors and SNR.

Q factors of the detectors mentioned above are shown as
Fig. 4. We define the signal-noise-ratio (SNR) as (h/σ)2,
here h indicates the edge contrast value and σ is the stan-
dard variance. From the figure, it is easy to see that the
Q factor of SPMM edge detector is better than the oth-
ers. This way indicates that the edge detector of SPMM
has the good performance of the edge location.

The methodology of calculating the singularity expo-
nents based on SPMM provides an efficient way for de-
tecting the edge of images in rich of texture. The singu-
larity exponents calculated by the multi-fractal formal-
ism are very precise and reliable. The MSM points in the
image detected by this way contain the most significant
features of human visual system.
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